Exercise 22

Explain why the function is discontinuous at the given number a. Sketch the graph of the function.

$$
f(x)=\left\{\begin{array}{ll}
\frac{2 x^{2}-5 x-3}{x-3} & \text { if } x \neq 3 \\
6 & \text { if } x=3
\end{array} \quad a=3\right.
$$

Solution

A graph of the function versus x is shown below.

The function is discontinuous at $x=3$ because although the left-hand and right-hand limits are both equal to 7 there, they are not equal to the value of the function there, which is 6 .

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{2 x^{2}-5 x-3}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(2 x+1)(x-3)}{x-3} \\
& =\lim _{x \rightarrow 3}(2 x+1) \\
& =2(3)+1 \\
& =7 \\
& \neq f(3)=6
\end{aligned}
$$

